Contents - Table Of Contents
- Table Of Contents
- Table Of Contents
- Table Of Contents
- Table Of Contents
- Table Of Contents
- Table Of Contents
- INTRODUCTION
- Single UPM and Two UPM Configurations
- Figure 1-2. 600V 2x UPM Configuration
- Single UPM Plus 1 UPM Configuration
- UPS Standard Features
- Advanced Battery Management
- Distributed Bypass System
- Energy Saver and High Alert Modes
- Battery System
- Using This Manual
- Symbols, Controls, and Indicators
- Getting Help
- SAFETY WARNINGS
- UPS INSTALLATION PLAN AND UNPACKING
- Installation Considerations
- V, 400V, 415V, and 480V Model Configurations
- Figure 3-1. Single UPM Configuration Dimensions
- Figure 3-2. Single UPM Configuration, Plus 1 FI-UPM (Dimensions)
- Figure 3-3. Two UPM Configuration (Dimensions)
- V Model Configurations
- Figure 3-5. 600V Single UPM Configuration, Plus 1 FI-UPM
- Figure 3-6. 600V Two UPM Configuration
- Figure 3-7. Side View Dimensions and Center of Gravity Measurements
- UPS System Power Wiring Preparation
- UPS System Interface Wiring Preparation
- Distributed Bypass Power Wiring Preparation
- Figure 3-8. Single UPM Configuration as Shipped on Pallet (380V, 400V, 415V, and 480V)
- Figure 3-9. Two UPM Configuration as Shipped on Pallet (380V, 400V, 415V, and 480V)
- INSTALLATION
- Figure 4-1. Removing the ISBM Section Left Side Shipping Bracket
- Figure 4-2. Removing the ISBM Section Right Side Shipping Bracket
- Mechanically Joining the Sections (600V Models Only)
- Figure 4-4. ISBM and UPM Sections Joined
- Figure 4-5. ISBM Section to UPM Section Joining Brackets
- Electrically Connecting the Sections (600V Models Only)
- Figure 4-6. UPS Intercabinet Interface Harness Locations
- Connecting Intercabinet CAN Cables and Connectors
- Figure 4-8. Pl1 Interface Board Location
- Field Installed UPM Installation
- Installing UPS External and Battery Power Wiring
- External Power Wiring Installation
- Figure 4-12. ISBM and UPM Section Conduit and Wire Entry Locations
- Figure 4-13. Distributed Bypass Wire Length
- Figure 4-14. ISBM Section Power Terminal Locations (380V, 400V, 415V, and 480V Models)
- Figure 4-15. ISBM Section Power Terminal Locations (600V Models)
- Figure 4-16. ISBM Section Power Terminal Detail – Section AA (380V, 400V, 415V, and 480V Models)
- Battery Power Wiring
- Installing Interface Connections
- TB1, TB2, and TB3 Connections (Other than TB1 Battery Interface Connections)
- Figure 4-18. ISBM Section Interface Terminal Locations
- Figure 4-19. Interface Terminal Detail
- Figure 4-21. Terminal Blocks TB1, TB2, and TB3 Connector Assignments
- TB1 Battery Interface Connections
- Figure 4-22. Typical Battery Interface Connection – Common Battery System
- X-Slot Connections
- Installing a REPO Switch
- Figure 4-26. REPO Switch
- Figure 4-27. Normally-Open REPO Switch Wiring
- Figure 4-28. Normally-Closed REPO Switch Wiring
- Installing Options, Accessories, and Distributed Bypass Control Wiring
- INSTALLATION CHECKLIST
- DISTRIBUTED BYPASS INSTALLATION CHECKLIST
- INSTALLING OPTIONS AND ACCESSORIES
- Installing an Optional Hot Sync CAN Bridge Card
- Figure 5-2. Hot Sync CAN Bridge Card Connections
- Installing Distributed Bypass Control Wiring
- Figure 5-3. Distributed Bypass System CAN and Pull-Chain Simplified Interface Wiring
- Figure 5-5. Distributed Bypass Pull-Chain Wiring without MOBs
- Figure 5-6. Distributed Bypass Pull-Chain Wiring with MOBs
- Installing an Optional Remote Monitor Panel II
- Figure 5-7. Remote Monitor Panel II and Relay Interface Module II Terminal Locations
- Figure 5-8. Remote Monitor Panel II, Relay Interface Module II, or Supervisory Contact Module II Wiring
- Installing an Optional Relay Interface Module II
- Installing an Optional Supervisory Contact Module II
- Figure 5-10. Supervisory Contact Module II Terminal Location
- Accessory Mounting Dimensions
- Figure 5-12. Remote Monitor Panel II Dimensions
- Figure 5-13. Relay Interface Module II Dimensions
- Figure 5-14. Supervisory Contact Module II Dimensions
- UNDERSTANDING UPS OPERATION
- Single UPS
- Figure 6-2. Path of Current Through the UPS in Online Mode
- Energy Saver System (ESS) Mode
- Bypass Mode
- Battery Mode
- Figure 6-4. Path of Current Through the UPS in Battery Mode
- Single UPS Unit System Oneline Configurations
- Figure 6-5. One UPM, Rectifier Feed, Battery System, Dual-Feed Configuration, Continuous Static Switch
- Figure 6-6. One UPM, Common Rectifier Feed, Common Battery, Dual-Feed Configuration, Continuous Static Switch FI-UPM
- Figure 6-7. One UPM, Common Rectifier Feed, Separate Battery, Dual-Feed Configuration, Continuous Static Switch FI-UPM
- Figure 6-8. Two UPM, Common Rectifier Feed, Common Battery, Dual-Feed Configuration, Continuous Static Switch
- Figure 6-9. Two UPM, Common Rectifier Feed, Separate Battery, Dual-Feed Configuration, Continuous Static Switch
- Figure 6-10. One UPM, Rectifier Feed, Battery System, IOM Configuration
- Figure 6-11. One UPM, Common Rectifier Feed, Common Battery, IOM Configuration, FI-UPM
- Figure 6-12. One UPM, Common Rectifier Feed, Separate Battery, IOM Configuration, FI-UPM
- Figure 6-13. Two UPM, Common Rectifier Feed, Common Battery, IOM Configuration
- Figure 6-14. Two UPM, Common Rectifier Feed, Separate Battery, IOM Configuration
- Figure 6-15. Simplified Dual-Feed UPS with Maintenance Bypass Panel
- Multiple UPS Distributed Bypass System
- Online Mode - Distributed Bypass
- Bypass Mode – Distributed Bypass
- Battery Mode - Distributed Bypass
- Figure 6-18. Path of Current through the UPSs in Battery Mode - Distributed Bypass
- Multiple UPS Distributed Bypass System Oneline Configurations
- Figure 6-19. Typical Distributed Bypass System - Continuous Static Switch, 1+1 and 2+0 Configurations
- Figure 6-20. Typical Distributed Bypass System -Continuous Static Switch, 2+1 and 3+0 Configurations
- Figure 6-21. Typical Distributed Bypass System -Continuous Static Switch, 3+1 and 4+0 Configurations
- UPS OPERATING INSTRUCTIONS
- Circuit Breakers
- Status Indicators
- Figure 7-3. Parts of the Touch Screen
- Figure 7-4. Sign In or Password Request Screen
- Using the Main Menu Buttons
- Power Maps Screen (Online Mode)
- Figure 7-8. Average Efficiency Screen from Home Screen
- Power Maps Screen (Bypass Mode)
- Meters Summary Screen
- Input Meters Screen
- Figure 7-15. Output Meters Screen
- Input Meters Detail Screen
- Battery Meters Screens
- Figure 7-20. Battery Log Detail
- System Events Main Screen
- Figure 7-23. User Log Screen
- System Status Screen and Controls
- Figure 7-27. Module Control Detail Screen
- Settings Screen
- Configuration Options Screen
- Figure 7-33. Disable ESS Screen
- Statistics Basic Screen
- ESS Comparison Screen
- System Overview Screen
- UPS Operation using the Color Touchscreen Control Panel
- Using the Remote Emergency Power-off Switch
- Figure 7-40. REPO Operation
- Multiple UPS Distributed Bypass Operation
- Starting the Distributed Bypass System in Bypass Mode
- Single UPM Shutdown
- Single UPS Shutdown using Load Off
- Single UPS Shutdown using UPM Shutdown
- Single UPS Restart
- UPS and Critical Load Shutdown
- Using the UPS LOAD OFF Pushbutton
- Using the UPS LOAD OFF Command
- COMMUNICATION
- PredictPulse
- Power Management Software
- Remote Monitor Panel II
- Relay Interface Module II
- Supervisory Contact Module II
- UPS MAINTENANCE
- Performing Preventive Maintenance
- Figure 9-1. ISBM and UPM Section Air Filter Locations - Continuous Static Switch
- Figure 9-2. FI-UPM Air Filter Location
- PERIODIC Maintenance
- Installing Batteries
- Maintenance Training
- PRODUCT SPECIFICATIONS
- UPS Output
- UPS Environmental
|
Understanding UPS Operation6-2 Eaton ® Power Xpert® 9395P-300 (300kVA, 300kW) UPS Installation and Operation Manual P-164000563—Rev 04 www.eaton.com/powerqualityThe emergency bypass consists of a continuous static switch, and a backfeed protection contactor K5. Thebypass breaker (if installed) is located in parallel with the static switch. The backfeed protection contactor islocated in series with the static switch. The static switch is armed and ready during normal operation.On a UPS configured as an Input Output Module (IOM), bypass circuitry is not installed. This configuration isprimarily used in multiple UPS parallel systems that do not need a bypass for each UPS and use a separateSystem Bypass Module (SBM) to provide system bypass capabilities.6.2 Single UPSA single UPS operates independently to support an applied load from the inverter, providing conditioned anduninterruptible AC power to the critical load from the output of the module. During an outage, the invertercontinues to operate, supporting power to the load from the battery supply. If the unit requires service, appliedloads are transferred to the internal bypass either automatically or manually. With the exception of a batterycabinet, no other cabinets or equipment are required for the single UPS to successfully support its appliedloads.6.2.1 ModesThe 9395P-300 UPS supports a critical load in five different modes of operation:l In Online mode, the critical load is supplied by the inverter, which derives its power from rectified utility ACpower. In this mode, the battery charger also provides charging current for the battery, if needed.l In Energy Saver mode, commercial AC power is supplied directly to the critical load through the continuousstatic switch and transfers automatically to Online mode if an abnormal condition is detected. The EnergySaver mode requires a UPS with a continuous static switch.l In Variable Module Management System mode, the UPS operates as a traditional double-conversion UPS,but selectively shifts the load to fewer UPMs to increase the efficiency of the UPS.l In Bypass mode, the critical load is directly supported by utility power.l In Battery mode, the battery provides DC power, which maintains inverter operation. The battery supportsthe critical load.The following paragraphs describe the differences in the five UPS operating modes, using block diagrams toshow the power flow during each mode of operation.6.2.2 Online ModeFigure 6-2 shows the path of electrical power through the UPS system when the UPS is operating in Onlinemode.During normal UPS system operation, power for the system is derived from a utility input source through therectifier input contactor K1. The front panel displays "Online" indicating the incoming power is within voltageand frequency acceptance windows. Three-phase AC input power is converted to DC using IGBT devices toproduce a regulated DC voltage to the inverter. When contactor K2 is closed the battery is charged directly fromthe regulated rectifier output through a buck DC converter.The battery converter derives its input from the regulated DC output of the rectifier and provides a buckedregulated DC voltage charge current to the battery. The battery is always connected to the UPS and ready tosupport the inverter should the utility input become unavailable.NOTE Variable Module Management System and Energy Saver modes are mutuallyexclusive. PreviousNext |