5-30 D30 Line Distance Relay GE Multilin5.2 PRODUCT SETUP 5 SETTINGS5The captured data also includes the fault type and the distance to the fault location, as well as the reclose shot number(when applicable) To include fault duration times in the fault report, the user must enable and configure breaker arcing cur-rent feature for each of the breakers. Fault duration is reported on a per-phase basis.The relay allows locating faults, including ground faults, from delta-connected VTs. In this case, the missing zero-sequencevoltage is substituted either by the externally provided neutral voltage (broken delta VT) connected to the auxiliary voltagechannel of a VT bank, or by the zero-sequence voltage approximated as a voltage drop developed by the zero-sequencecurrent, and user-provided zero-sequence equivalent impedance of the system behind the relay.The trigger can be any FlexLogic™ operand, but in most applications it is expected to be the same operand, usually a vir-tual output, that is used to drive an output relay to trip a breaker. To prevent the overwriting of fault events, the disturbancedetector should not be used to trigger a fault report. A FAULT RPT TRIG event is automatically created when the report istriggered.If a number of protection elements are ORed to create a fault report trigger, the first operation of any element causing theOR gate output to become high triggers a fault report. However, If other elements operate during the fault and the first oper-ated element has not been reset (the OR gate output is still high), the fault report is not triggered again. Considering thereset time of protection elements, there is very little chance that fault report can be triggered twice in this manner. As thefault report must capture a usable amount of pre and post-fault data, it can not be triggered faster than every 20 ms.Each fault report is stored as a file; the relay capacity is fifteen (15) files. An sixteenth (16th) trigger overwrites the oldestfile.The EnerVista UR Setup software is required to view all captured data. The relay faceplate display can be used to view thedate and time of trigger, the fault type, the distance location of the fault, and the reclose shot number.The FAULT REPORT 1 SOURCE setting selects the source for input currents and voltages and disturbance detection. TheFAULT 1 REPORT TRIG setting assigns the FlexLogic™ operand representing the protection element/elements requiring oper-ational fault location calculations. The distance to fault calculations are initiated by this signal. The FAULT REPORT 1 Z1 MAGand FAULT REPORT 1 Z0 MAG impedances are entered in secondary ohms.The FAULT REPORT 1 VT SUBSTITUTION setting shall be set to “None” if the relay is fed from wye-connected VTs. If delta-con-nected VTs are used, and the relay is supplied with the neutral (3V0) voltage, this setting shall be set to “V0”. The method isstill exact, as the fault locator would combine the line-to-line voltage measurements with the neutral voltage measurementto re-create the line-to-ground voltages. See the ACTUAL VALUES ÖØ RECORDS Ö FAULT REPORTS menu for additionaldetails. It required to configure the delta and neutral voltages under the source indicated as input for the fault report. Also,the relay will check if the auxiliary signal configured is marked as “Vn” by the user (under VT setup), and inhibit the faultlocation if the auxiliary signal is labeled differently.If the broken-delta neutral voltage is not available to the relay, an approximation is possible by assuming the missing zero-sequence voltage to be an inverted voltage drop produced by the zero-sequence current and the user-specified equivalentzero-sequence system impedance behind the relay: V0 = –Z0 × I0. In order to enable this mode of operation, the FAULTREPORT 1 VT SUBSTITUTION setting shall be set to “I0”.The FAULT REP 1 SYSTEM Z0 MAG and FAULT REP 1 SYSTEM Z0 ANGLE settings are used only when the VT SUBSTITUTION set-ting value is “I0”. The magnitude is to be entered in secondary ohms. This impedance is an average system equivalentbehind the relay. It can be calculated as zero-sequence Thevenin impedance at the local bus with the protected line/feederdisconnected. The method is accurate only if this setting matches perfectly the actual system impedance during the fault. Ifthe system exhibits too much variability, this approach is questionable and the fault location results for single-line-to-groundfaults shall be trusted with accordingly. It should be kept in mind that grounding points in vicinity of the installation impactthe system zero-sequence impedance (grounded loads, reactors, zig-zag transformers, shunt capacitor banks, etc.).