Setting up26 - ENGLISHGetting StartedScreen size and throw distancePlace the projector referringto the diagram on the rightand the figures of throwingdistance. You can adjust thedisplay sizeL (LW/LT)ScreenL (LW/LT)SWScreenSHSWSDProjected imageSHL (LW/LT) *1 Projection distance (m)SH Height of the projection area (m)SW Width of the projection area (m)SD Diagonal length of the projection area (m)LW : Minimum distance*1 :LT : Maximum distanceAttentionBefore installing, please read “Precautions for Use” (z Æ pages 14 to 18).J Projection distance for PT-VX400NTEA(All measurements below are approximate and may differ slightly from the actual measurements.)Projection size For 4:3 aspect ratio For 16:9 aspect ratioScreen diagonal (SD) Minimum distance(LW)Maximum distance(LT)Minimum distance(LW)Maximum distance(LT)0.76 m(30") 0.7 m(2.26') 1.1 m(3.74') 0.8 m(2.49') 1.2 m(4.07')1.02 m(40") 0.9 m(3.05') 1.5 m(5.02') 1.0 m(3.35') 1.7 m(5.48')1.27 m(50") 1.2 m(3.87') 1.9 m(6.30') 1.3 m(4.23') 2.1 m(6.89')1.52 m(60") 1.4 m(4.66') 2.3 m(7.58') 1.6 m(5.09') 2.5 m(8.27')1.78 m(70") 1.7 m(5.45') 2.7 m(8.86') 1.8 m(5.94') 3.0 m(9.68')2.03 m(80") 1.9 m(6.23') 3.1 m(10.14') 2.1 m(6.82') 3.4 m(11.06')2.29 m(90") 2.2 m(7.05') 3.5 m(11.42') 2.3 m(7.68') 3.8 m(12.47')2.54 m(100") 2.4 m(7.84') 3.9 m(12.73') 2.6 m(8.53') 4.2 m(13.88')3.05 m(120") 2.9 m(9.42') 4.7 m(15.29') 3.1 m(10.27') 5.1 m(16.67')3.81 m(150") 3.6 m(11.81') 5.8 m(19.13') 3.9 m(12.86') 6.4 m(20.83')5.08 m(200") 4.8 m(15.78') 7.8 m(25.52') 5.2 m(17.19') -6.35 m(250") 6.0m(19.75') - 6.6 m(21.52') -7.62 m(300") 7.2 m(23.72') - 7.9 m(25.85') -Any other projection distance can be obtained according to the screen dimensions (m) using the following calculations.The distance is shown in units of meters. (The calculated distance may contain a certain error.)If the screen dimensions are written as “SD",For 4:3 aspect ratio For 16:9 aspect ratioScreen height (SH) = SD(m) × 0.6 = SD(m) × 0.490Screen width (SW) = SD(m) × 0.8 = SD(m) × 0.872Minimum distance (LW) = 0.9531 × SD(m) - 0.0338 = 1.0384 × SD(m) - 0.0337Maximum distance (LT) = 1.5384 × SD(m) - 0.0327 = 1.6756 × SD(m) - 0.0319